metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Muhammad D. Bala,* Apollinaire Munyaneza and Neil J. Coville

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa

Correspondence e-mail: mdbala@aurum.wits.ac.za

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å Disorder in main residue R factor = 0.025 wR factor = 0.069 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dicarbonyl(η^5 -1-carboxycyclopentadienyl)methyliron(II)

The title carboxyl-functionalized iron complex, $[Fe(CH_3)-(C_6H_5O_2)(CO)_2]$, was prepared by the reaction of CO_2 with a lithiated parent unsubstituted compound. The $Fe(CO)_2Me$ legs of the tripodal piano stool are characterized by disorder between the methyl group and the carbonyl group, and the two ligands were refined (50% site occupancy) over the two positions. The ligands are alternately located on either side of a local pseudo-mirror plane running through the carboxylic functionality and the central Fe atom.

Comment

Group six analogues of the title complex have been prepared (El Mouattasim *et al.*, 1994) with the aim of utilizing the functional carboxylic acid group as a labelling agent for amino acids. We prepared the title compound, (I), as part of our interest in solvent-free solid–gas reactions. It was envisaged that the network of hydrogen bonding between neighbouring molecules *via* the carboxylic acid functionality will serve as channels for small gaseous molecules to permeate into the crystal structure (Braga *et al.*, 2002; Fig. 2). Preliminary studies with SO₂ have indicated otherwise, indicating that intramolecular forces, such as steric interactions between ligands bonded to the central metal atom, may be more crucial in influencing the single-crystal/gas reactivity (Munyaneza *et al.*, 2005).

In the title compound, the Fe(CO)₂Me legs of the tripodal piano stool are characterized by a disordered Me group which was refined over positions C2 and C2'. These are located on opposite sides of a local pseudo-mirror plane running through the carboxylic acid functionality and the central Fe atom, with 50% occupancy of each site (Fig. 1). Mousser *et al.* (1996) have prepared four-legged piano stool tungsten analogues of the title complex, and it is interesting to note that the Me group was similarly disordered between two *trans* positions in *syn* and *anti* configurations relative to the carboxylic acid functional group. In the crystal structure, molecules form the expected centrosymmetric dimers *via* $O-H\cdots O$ hydrogen bonds (Table 2 and Fig. 2).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 19 September 2005 Accepted 23 September 2005 Online 28 September 2005

2276 independent reflections 1978 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 28.0^{\circ}$ $h = -10 \rightarrow 9$

 $k = -13 \rightarrow 14$

 $l = -11 \rightarrow 15$

+ 0.1317P]

 $D_x = 1.657 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 830 reflections $\theta = 2.6 - 30.2^{\circ}$ $\mu = 1.58~\mathrm{mm}^{-1}$ T = 173 (2) K Block, brown $0.24 \times 0.19 \times 0.19$ mm

Figure 1

ORTEP3 (Farrugia, 1999) diagrams of the title complex, showing the two conformations with the Me and CO ligands interchanged. Displacement ellipsoids are shown at 50% probability level.

Figure 2

Packing diagram, showing the hydrogen bonding (dashed lines) between neighbouring carboxyl groups.

Experimental

The title complex was prepared by adapting the method of El Mouattasim et al. (1994), except that $(\eta^5-C_5H_5)Fe(CO)_2Me$ and butyllithium were substituted for $(\eta^5-C_5H_5)Mo(CO)_3Me$ and secbutyllithium. Single crystals suitable for X-ray diffraction were grown from CH₂Cl₂-hexane (70/30). IR v_{CO} (CH₂Cl₂, cm⁻¹): 2059 (vs), 1998 (vs); ¹H NMR (CDCl₃, p.p.m.): 5.31 (s, 2H, CpH), 4.86 (s, 2H, CpH), 0.28 (s, 3H, Me).

Crystal data

$[Fe(CH_3)(C_6H_5O_2)(CO)_2]$
$M_r = 236.00$
Monoclinic, $P2_1/c$
$a = 7.6183 (15) \text{\AA}$
b = 10.714 (2) Å
c = 12.039 (2) Å
$\beta = 105.661 \ (4)^{\circ}$
V = 946.2 (3) Å ³
$\mathbf{Z} = \mathbf{A}$

Data collection

Bruker SMART 1K CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.704, T_{\max} = 0.754$ 6617 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0402P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.025$ wR(F²) = 0.070 where $P = (F_0^2 + 2F_c^2)/3$ S = 1.08 $(\Delta/\sigma)_{\rm max}=0.034$ $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$ 2276 reflections $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 156 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C2-Fe	2.031 (8)	C2′-Fe	2.004 (9)
C1-O3	1.164 (7)	C3-O5	1.124 (2)
C1-Fe	1.782 (7)	C3–Fe	1.7670 (19)
C1′-O3′	1.146 (7)	C9-O2	1.2472 (19)
C1′-Fe	1.790 (8)	C9-O1	1.2926 (19)
O3-C1-Fe	178.9 (16)	C3-Fe-C1	88.1 (6)
O3'-C1'-Fe	176.1 (18)	C3-Fe-C2	90.3 (5)
O5-C3-Fe	179.7 (2)	C1-Fe-C2	87.2 (8)
02-C9-O1	123.71 (15)		

Fable 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O2^{i}$	0.84	1.79	2.6240 (19)	174

Symmetry code: (i) -x + 2, -y, -z.

The H atom attached to the O atom was positioned geometrically and allowed to ride $[O-H = 0.84 \text{ Å} \text{ and } U_{iso}(H) = 1.5U_{eq}(O)]$. The H atoms attached to aromatic C atoms were positioned geometrically and allowed to ride on their parent atoms during refinement, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The disordered methyl H atoms were accounted for using a two-site model, in which the H atoms were placed geometrically and allowed to ride, with C-H =0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL and ORTEP3 (Farrugia, 1999); software used to prepare material for publication: SHELXTL.

The authors acknowledge Manuel Fernandez for the data collection and helpful discussions, and the NRF and the University of the Witwatersrand for financial support.

References

Braga D., Cojazzi, G., Emiliani, D., Maini, L. & Grepioni, F. (2002). Organometallics, 21, 1315–1318. Bruker (1999). SHELXTL, SMART and SAINT-Plus (including XPREP and SADABS). Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.

El Mouattasim, B., ElAmouri, H., Salmain, M. & Jaouen, G. (1994). J. Organomet. Chem. 479, C18–C20.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Mousser, A., Bennouna, A., Gorfti, A., Salmain, M., Cabestaing, C. & Jaouen, G. (1996). J. Chem. Crystallogr. 26, 835–840.
- Munyaneza, A., Bala, M. D. & Coville, N. J. (2005). Unpublished results.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.